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Abstract

Probabilistic estimation of losses in a building due to earthquake damage is a topic of interest to decision makers and
an area of active research. One promising approach to the problem, proposed by the Pacific Earthquake Engineering
Research (PEER) Center, involves breaking the analysis into separate components associated with ground motion haz-
ard, structural response, damage to components and repair costs. Each stage of this method has both inherent (aleatory)
randomness and (epistemic) model uncertainty, and these two sources of uncertainty must be propagated through the
analysis in order to determine the total uncertainty in the resulting loss estimates. In this paper, the PEER framework
for seismic loss estimation is reviewed and options for both characterizing and propagating the various sources of uncer-
tainty are proposed. Models for correlations (among, e.g., element repair costs) are proposed that may be useful when
empirical data is lacking. Several options are discussed for propagating uncertainty, ranging from flexible but expensive
Monte Carlo simulation to closed form solutions requiring specific functional forms for relationships between variables
to be assumed. A procedure that falls between these two extremes is proposed, which integrates over the discrete element
damage states, and uses the first-order second-oment method to collapse several conditional random variables into a
single conditional random variable representing total repair cost given the ground motion intensity. Numerical integra-
tion is then used to incorporate the ground motion hazard. Studies attempting to characterize epistemic uncertainty or
develop specific elements of the framework are referenced as an aid for users wishing to implement this loss-estimation
procedure.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Decision makers are interested in estimates of annual losses in a building due to earthquake damage (both
financial and in terms of casualties). Determination of loss estimates, as well as the uncertainty in these esti-
mates, is a topic of current study in performance-based earthquake engineering. Among the quantities to be
determined are the uncertainty in the annual losses and the contribution of each individual source of
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uncertainty to the total uncertainty in annual losses. Current efforts in this field consider the ground motion
hazard, building response, damage to building elements, element repair costs, and total repair cost as individ-
ual random variables, and then propagate uncertainty through each step to find a final result. This paper pro-
vides an overview of the Pacific Earthquake Engineering Research (PEER) Center loss estimation framework,
and describes approaches for characterizing and propagating the many sources of uncertainty associated with
loss estimation. For brevity, derivations of some equations and descriptions of model generalizations are omit-
ted and referenced in a related report [1] and other relevant documents.

To calculate total uncertainty in the output variables of interest, it is necessary to incorporate both episte-
mic and aleatory uncertainty and account for their effects on the output variables. An approach to this prob-
lem is proposed here that uses a combination of numerical integrations and first-order second-moment
(FOSM) approximations. The FOSM method is used to collapse the large vectors of conditional random vari-
ables into a single conditional random variable, total repair cost given ground motion intensity. Numerical
integration is then used to combine this random variable with the ground motion hazard. This last step is trea-
ted accurately because it is believed to be the dominant contributor to the results. The combination of total
repair cost given ground motion intensity with the ground motion hazard also does not involve vectors of ran-
dom variables, meaning that the numerical integration is practicable. If the random variables associated with
this final integration have specific functional forms, an analytic solution is also available, as will be illustrated.
The quantities to be studied are the expected value and variance of the mean annual loss (due to epistemic
uncertainty), mean frequency of collapse, and annual rate of exceeding a given cost.

Alternative approaches for propagation of uncertainty are briefly mentioned where appropriate. Because
this framework involves large vectors of dependent random variables, and because at least one stage of the
analysis is computationally expensive, however, the approach proposed here is believed have advantages rel-
ative to alternatives such as Monte Carlo simulation and complete numerical integration. Regardless of the
approach used to propagate uncertainty, it is necessary to represent and estimate what may be a complex var-
iance and covariance structure among the many random variables present in the problem. This paper presents
several models which may be adopted for these estimates, and the models are equally useful for any propaga-
tion method. Some uncertainties, such as record-to-record variability of structural response at a given IM
level, may be empirically estimated for specific structures. More generic quantification is needed, however,
for many other types of uncertainties if this procedure is to be practically performed. References to relevant
uncertainty estimates are provided here to aid those wishing to implement the procedure.
2. Loss estimation framework

The proposed procedure uses the loss estimation framework from the Pacific Earthquake Engineering
Research (PEER) Center [2,3]. There are several components in this loss estimation model, consisting of quan-
tifying the seismic ground motion hazard, structural response, damage to the building and contents, and
resulting consequences (financial losses, fatalities, and business interruption). The process is modular, allowing
the stages to be modeled and executed independently, and then linked back together using intermediate output
variables. Similar multi-stage methodologies have had success in other complex Probabilistic Risk Assessment
problems [4,5], and a significant effort has been made by the PEER Center to develop this approach for prac-
tical earthquake risk assessment applications. The framework for estimating total repair costs (TC) is built
around the following equation
kTCðzÞ ¼
Z

u

Z
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Z
y
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x

GTCjDVEðzjuÞfDVEjDMðujvÞfDMjEDPðvjyÞfEDPjIMðyjxÞ
dkIMðxÞ

dx

����
����dudvdydx ð1Þ
with terms defined as follows. kTC(z) is the annual rate of exceeding a total repair cost of z. GTCjDVE (zju) is the
Complimentary Cumulative Distribution Function (CCDF) of TC, conditioned on the vector of damage val-
ues of each element (DVEj is the damage value of element j). Boldface notation is used to denote vector-valued
variables. fDVEjDM(ujv) is the Probability Density Function (PDF) of the vector of damage values of each ele-
ment, given the vector of damage states of each element (DMj is the damage state of element j). fDMjEDP(vjy) is
the PDF of the vector of (discrete) damage states, given the vector of engineering demand parameters.
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fEDPjIM(yjx) is the PDF of the vector of engineering demand parameters, given the intensity measure. jdkIM(x)j
is the absolute value of the derivative of the annual rate of exceeding a given value of the intensity measure,
denoted IM; this information comes from a seismic hazard curve. Eq. (1) is based on the Total Probability
Theorem, which is used to aggregate all of these conditional probability distributions.

A similar equation is used to compute the annual rate of collapse. Its form is simpler because it is not nec-
essary to track individual element behavior when predicting global collapse
kCollapse ¼
Z

x
PðCjIM ¼ xÞ dkIMðxÞ

dx

����
����dx ð2Þ
where kCollapse is the annual rate of collapse and P(CjIM = x) is the probability that a record with intensity
IM = x will cause collapse of the structure. The amount of time that a building is out of service due to earth-
quake damage also of interest, but is not considered here because the relevant models are not well defined [6].
The various model components and assumptions typically used in this framework are described in the follow-
ing paragraphs.

All damage is assumed to occur on an element level, if the structure does not collapse. Total repair cost
(denoted TC) is then the sum of the damage cost of each element in the structure [7]. If the structure collapses,
then the repair cost is simply a single random variable representing replacement cost.

At high IM levels, the potential exists for a structure to experience collapse. Global side-sway collapse is
indicated in computer analyses by extreme deflections at one or more story levels, and local collapses due
to column axial failures can also be incorporated [8]. These collapses are important, both for directly comput-
ing the annual rate of collapse as well for modeling repair costs due to collapses. The probability of collapse is
typically estimated by scaling records up until they cause collapse [9], and then counting the fraction of records
at a given IM level that cause collapse or fitting a function to the observed fractions of collapse over a range of
IM levels [10,11].

Means and variances of repair costs for each possible damage state are needed for all element types under
consideration. Mean repair costs can be estimated from sources such as R.S. Means Company’s published
materials on construction cost estimating [12], making appropriate adjustments for differences between the
costs of post-disaster repair and new construction. As might be expected, uncertainties in repair costs can
be very large [8].

Damage measures are typically not continuous, but rather a discrete set of damage states [7,13]. Occurrence
of damage is described by fragility functions, which return the probability of an element exceeding given dam-
age states as a function of structural response level. The damage state classification of an element is termed a
Damage Measure, or DM. One fragility function is needed for each potential damage state of each element
type.

Structural response parameters (e.g., maximum interstory drifts and peak floor accelerations for each floor)
are termed Engineering Demand Parameters, or EDPs. A probabilistic model is needed for the distribution of
EDPs, conditioned on the level of IM. This conditional distribution is usually estimated from results of non-
linear dynamic analysis performed on a finite element structural model. This is typically the most computa-
tionally expensive step of the analysis procedure, so minimizing the required number of analyses is desirable.

It is necessary to determine the annual rate of exceeding various levels of ground motion intensity, i.e. the
hazard curve, for the predictor intensity measure (IM) at the location of interest. This is done using either site-
specific Probabilistic Seismic Hazard Analysis (PSHA) or seismic hazard maps. The PSHA procedure has been
described in detail elsewhere [14,15], and is not further discussed in this study.

Several assumptions are made in the analysis framework. They are believed to be consistent with state-of-
the-art loss estimation efforts, but most could be relaxed without any formal difficulty. Markovian dependence
is assumed for all conditional distributions in the framework. For example, it is assumed that the distribution
of the DM vector can be conditioned solely on the EDP vector, and that knowledge of the IM provides no
additional information. Second, all relations in the framework are assumed to be scalar functions. For exam-
ple, the conditional distribution of the Damage Measure of element j is a function of only the ith Engineering
Demand Parameter. Or alternatively, fDMjjEDPðvj j yÞ ¼ fDMjjEDPiðvj j yiÞ. This assumption keeps the functional
relationships between individual variables simple, which aids in estimating functions from data. Finally, all
damage is assumed to occur on the element level. Generalizations to account for, e.g., contractor efficiencies
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of scale or demand surge (the tendency for construction prices to increase after a disaster due to an increase in
demand for construction services) can be incorporated in the model framework once research progresses to the
stages where their effects can be quantified.

3. Uncertainty propagation

Explicit numerical evaluation of Eq. (1) is not practically possible in most cases, due to the high dimension-
ality of several of the random variables, so other solution methods are needed. Alternatives include Monte
Carlo simulation and approximate methods such as first-order second-moment analysis. There are several
stages of propagation, and different methods might be used at different steps.

The procedure proposed in detail here uses a combination of first-order second-moment analysis and expli-
cit integration. The FOSM method is used to calculate the mean and variance of TC given IM. That is,
GTCjIMðzjxÞ ¼
Z

u

Z
v

Z
y

GTCjDVEðzjuÞfDVEjDMðujvÞfDMjEDPðv; yÞfEDPjIMðyjxÞdudv dy ð3Þ
is evaluated by estimating the mean and variance of TCjIM. A complementary cumulative distribution func-
tion GTCjIM(zjx) is fit to this mean and variance, and integrated numerically or analytically over the derivative
of the hazard curve, jdkIM(x)j, to generate the mean annual rate of exceeding a given repair cost.

The FOSM approximations used to obtain moments of TCjIM from EDP, DM and DVE are justified by
the assumption that the uncertainty in the IM hazard curve is the most significant contributor to variance of
the total loss. Therefore, the full distribution for IM is retained, but FOSM approximations are used for all
(first and second) moments conditioned on IM. In addition, information about the full distributions of some
variables such as repair costs is typically not available, and so using only the first two moments of these dis-
tributions does not result in a significant loss of available information. Details of the steps required to perform
the proposed procedure are presented in the following sections.

3.1. Specify EDP given IM

The proposed model for structural response used in this study is EDPijIM = hi(IM)ei(IM), where hi(IM) is the
(deterministic) mean value of EDPi given IM, and ei(IM) is a random variable with mean of one and conditional
variance adjusted to model the variance in EDPi. (The notation XjY denotes that the random variable X is con-
ditioned on Y.) Taking logarithms gives a random variable of the form lnEDPijIM = lnhi(IM) + ln ei(IM). Note
that the expected value of lnEDPijIM is lnhi(IM), and that the variance of lnEDPijIM is equal to the variance of
ln ei(IM). The mean and variance of lnEDPijIM for each EDP, as well as the correlations between EDPs (all as a
function of the IM level), can be determined from Incremental Dynamic Analysis. This information will be
needed for the propagation procedure that follows. The mean of parameter EDPi is denoted lln EDPijIM, or equiv-
alently, E[ln EDPijIM]. Similarly, variances and correlations are denoted r2

ln EDPi jIM and qln EDPi jIM;ln EDPjjIM. The
correlation between variables can equivalently be represented by the covariance, denoted rln EDPijIM;ln EDPjjIM.
(Variances will be denoted by r2

X or Var[X] and similarly, covariances will be denoted rX,Y or Cov[X,Y].)
As an alternative to estimating only the means and variances as proposed above, one could use Monte

Carlo simulation. A large number of dynamic analyses would be performed, and each resulting vector of struc-
tural response values used as input for the later stages of the assessment [7]. Monte Carlo simulation has the
advantage of more directly incorporating epistemic model uncertainty; one can treat assumed structural model
parameters such as element stiffnesses as having epistemic uncertainty, and include simulated values for these
parameters in parallel with the dynamic analysis simulations.

3.2. Collapse out the intermediate variables for element damage states

The discrete states of the Damage Measure variable used in current loss estimation are not compatible with
the FOSM approach, which requires continuous functions for the moments. To deal with the discrete states,
we take advantage of the fact that one can always ‘‘collapse’’ the two distributions DMjEDP and DVEjDM

into one continuous distribution DVEjEDP by integrating over the intermediate conditioning variable
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fDVEjEDPðujyÞ ¼
Z

v

fDVEjDMðujvÞfDMjEDPðvjyÞdv ð4Þ
For a given element with n possible damage states, we use a set of element fragility functions F1, F2 . . . Fn,
such that Fi(y) = P(DM > dijEDP = y), as illustrated in Fig. 1a. These functions will have a corresponding set
of distributions c1, c2 . . .cn of element repair costs such that ci(v) is a probability distribution of DVE, given
that the damage state equals di, as illustrated in Fig. 1b. These models provide information sufficient to deter-
mine the first two moments of the collapsed distributions.

From the total probability theorem, Eq. (4) can be written in scalar form for each individual DVE param-
eter as fDVEjEDP ¼

P
ifDVEjDM¼di P DM¼di jEDP. For later FOSM purposes, furthermore, it is sufficient to find sim-

ply the conditional means, variances, and covariances of the DVEs given the EDPs. Taking the mean of this
PDF gives the result
E½DVEjEDP� ¼
X

i

E½DVEjDM ¼ di�P ðDM ¼ diÞ ¼
X

i

liðF iðEDPÞ � F iþ1ðEDPÞÞ ð5Þ
Recognizing that r2
X ¼ E½X 2� � l2

X , one can similarly obtain the following result
r2
DVEjEDP ¼ EDM½VarDVE½DVEjDM�� þ VarDM½EDVE½DVEjDM��

¼
X

i

r2
DVEi
ðF iðEDPÞ � F iþ1ðEDPÞÞ þ

X
i

ðli � �lÞ2ðF iðEDPÞ � F iþ1ðEDPÞÞ ð6Þ
where �l is the conditional expectation computed in Eq. (5). Fig. 2 shows an example of the mean and standard
deviation of DVEjEDP, computed using the distributions shown in Fig. 1. Note that no first-order approxi-
mation was needed to obtain these results.

Monte Carlo simulation could also be used to evaluate Eq. (4), and this would be a natural choice if sim-
ulation was being used to evaluate other steps of the model. The computational expense of Monte Carlo will
be minimal at this step, because simulation only involves repeatedly evaluating the simple analytical equations
associated with Fig. 1.

3.3. A model for element correlations

To complete the characterization of DVE given EDP, correlations among the DVE values of all elements
are needed. Properly accounting for these correlations is important: one study found that neglecting correla-
tions among element damage values resulted in a 25% underestimation of variance in total repair cost, relative
to the case where best estimates of correlations were used [16]. Note that correlations will be defined for the
continuous distribution of DVE given EDP, rather than the previous distributions with discrete DM states
where a correlation coefficient is a less meaningful measure of stochastic dependence. Estimation of these
Fig. 1. Illustration of element damage and cost models. (a) Element fragility functions and (b) element repair costs.



Fig. 2. (a) Mean and (b) standard deviation of DVEjEDP.

J.W. Baker, C.A. Cornell / Structural Safety 30 (2008) 236–252 241
correlations is a difficult task due to a lack of data, but the following characterization scheme may be helpful.
Assume a model of the form: ln DVEkj ln EDPi ¼ gkðln EDPiÞ þ ln eStruc þ ln eElClassm þ ln eElk , where eStruc is a
random variable representing sources of uncertainty common to the entire structure, eElClassm represents uncer-
tainty common only to elements of class ‘‘m’’ (e.g., drywall partitions, moment connections, etc.), and eElk rep-
resents uncertainty unique to element k. All of these e’s are assumed to be mutually uncorrelated. Note that
logarithms have been taken so that instead of a product of random variables, the model contains a (more trac-
table) sum of random variables. The variances of these random variables are then defined as
Var½ln eStruc j ln EDPi� ¼ b2

Struc, Var½ln eElClassm j ln EDPi� ¼ b2
ElClass for all m, and Var½ln eElk j ln EDPi� ¼ b2

El

for all k. The total variance of lnDVEkjlnEDPi is the sum of these variances.
For this special case, a simple closed-form solution exists for the correlation coefficient. If two elements are

in the same class (e.g. drywall partitions), then the correlation in their repair costs, DVEk and DVEj, is:
qln DVEk ;ln DVEjj ln EDPi
¼ b2

Struc þ b2
ElClass

b2
Struc þ b2

ElClass þ b2
El

ð7Þ
If two elements are in the different classes (e.g. a drywall partition and a moment connection), then the cor-
relation in their repair costs, DVEk and DVEj, is:
qln DVEk ;ln DVEjj ln EDPi
¼ b2

Struc

b2
Struc þ b2

ElClass þ b2
El

ð8Þ
Loosely speaking, the correlation coefficient between two DVE’s can be said to be the ratio of their shared
variances to their total variance. A more general analytic solution also exists that allows b2

ElClass to vary by
class, allows b2

El to vary by element, and allows both to be functionally dependent on the EDP value [1, Appen-
dix A] . The model can also be expanded to more than three e terms if desired.

The use of more than two uncertain terms, and the use of b2 terms that vary by class or element is termed a
generalized equi-correlated model. The correlation matrix for this model has off-diagonal terms that vary from
term to term, as opposed to the strict equi-correlated model, where all off-diagonal correlation coefficients are
identical [17]. Note that correlation matrices developed from any generalized equi-correlated model will be
non-negative definite; this is a necessary property for correlation matrices, and is not guaranteed to hold if
the analyst simply estimates individual correlations and aggregates them into a matrix. This correlation model
can be used for both the procedure proposed here as well as for Monte–Carlo-based procedures (where they
would be incorporated by simulating correlated random variables [18]).

3.4. Calculate element damage values as a function of IM

Using information from above, it is possible to calculate the first and second moments of lnDVEjIM. To
maintain tractability, this calculation is performed in an approximate way referred to in structural reliability
literature as first-order second-moment, or FOSM. With this method, a first-order Taylor expansion of
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lnDVEkjlnEDPi is used. Denote lnDVEkjlnEDPi as gk(ln EDPi). Then the FOSM estimate of the mean of ln
DVEk given IM is
lln DVEk jIM ffi gkðlln EDPijIMÞ ð9Þ
That is, the mean of lnDVEkjIM is the mean of lnDVEkjlnEDPi, evaluated at the mean value of lnEDPi pre-
dicted at level IM. Using a similar approach with conditional moments, it can be shown that the variance of
lnDVEk given IM is
r2
ln DVEk jIM ffi r2

ln EDPijIM

ogk

o ln EDPi

� �2
�����
lln EDPi jIM

þ vkðlln EDPi jIMÞ ð10Þ
where vk(ln EDPt) is the variance of lnDVEk given lnEDPi. The covariance in DVE values between two com-
ponents can be found similarly
r2
ln DVEk ;ln DVEljIM ffi rln DVEk j ln EDPi ;ln DVElj ln EDPjðlln EDPijIM; lln EDPjjIMÞ

þ ogk

o ln EDPi

� �
ogl

o ln EDPj

� ����� lEDPijIM

lEDPjjIM

rln EDPijIM;ln EDPjjIM ð11Þ
where the notation rln DVEk jln EDPi;ln DVEljln EDPjðlln EDPi jIM ; lln EDPjjIMÞ is used to denote that the covariance
rln DVEk jln EDPi ;ln DVEljln EDPj should be evaluated at ln EDPi ¼ lln EDPi jIM and ln EDPj ¼ lln EDPjjIM.

These results can now be switched to their non-log form using first-order methods
lDVEk jIM ffi elln DVEk jIM ð12Þ
r2

DVEk jIM ffi e2hkðlln EDPi jIMÞr2
ln DVEk jIM ð13Þ

r2
DVEk ;DVEljIM ffi evkðlln EDPi jIMÞþvlðlln EDPi jIMÞr2

ln DVEk ;ln DVEljIM ð14Þ
These values specify the first two moments of the element damage costs for a given IM.
The results from individual elements can then be used to compute the expectation and variance for the total

cost of damage to the entire building
lTCjIM ¼
Xn

k¼1

lDVEk jIM ð15Þ

r2
TCjIM ¼

Xn

k¼1

r2
DVEk jIM þ 2

Xn

k¼1

Xn

l¼kþ1

r2
DVEk ;DVEjIM ð16Þ
where n is the number of elements in the structure.
3.5. Account for structural collapse

As noted earlier, the analysis method should account for collapses. If the large deflections associated with
the collapse cases are statistically combined with the deflections of the non-collapse cases, the estimated means
and variances of some EDPs such as interstory drifts may be particularly sensitive to the few collapse cases,
and this have undesirable effects on the above FOSM calculations. A more robust method to account for the
possibility of collapse is described here. In the following calculations, a collapse indicator variable, ‘‘C’’ is
used. The condition of no collapse is denoted by �C, the complement of the collapse indicator variable.

First, at each IM level, compute the probability of collapse. Next, perform the above procedure using only
the structural analysis results that did not cause collapse. The results from Eqs. (15) and (16) computed using
only non-collapse results are denoted E[TCjIM, � C] and Var[TCjIM, � C]. Finally, define an expected value
and variance of total cost given that collapse has occurred, denoted E[TCjC] and Var[TCjC] (note that these
terms are not functions of IM, although this is not necessary in what follows). The expected value accounting
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for collapses is then simply the sum of the collapse and no collapse TC values, weighted by their respective
probabilities of occurrence
lTCjIM ¼ P ð� CjIMÞE½TCjIM;� C� þ P ðCjIMÞE½TCjC� ð17Þ
The variance of TC for a given IM level can be shown to equal
r2
TCjIM ¼P ð� CjIMÞðVar½TCjIM;� C� þ ðE½TCjIM� � E½TCjIM;� C�Þ2Þ

þ P ðCjIMÞðVar½TCjC� þ ðE½TCjIM� � E½TCjC�Þ2Þ ð18Þ
The procedure can now be implemented as before, with this conditional mean and variance replacing the
equivalent results from Eqs. (15) and (16). This modification is likely needed, unless the building of interest is a
ductile earthquake-resistant building and repair costs are dominated by contents damage.

3.6. Incorporate the ground motion hazard

Using the mean and variance of TC given IM and the derivative of the ground motion hazard curve,
dkIM(x), the mean and variance of TC per annum can be calculated by numerical integration
lTC ¼
Z

x
lTCjIMðxÞjdkIMðxÞj ð19Þ

r2
TC ¼ E½r2

TCjIM� þ Var½lTCjIM� ð20Þ

¼
Z

x
r2

TCjIMðxÞjdkIMðxÞj þ
Z

x
l2

TCjIMðxÞjdkIMðxÞj � l2
TCjIM
where lTCjIM(x) and r2
TCjIMðxÞ denote the conditional mean and variance, respectively, of TCjIM evaluated at

IM=x. Note that the first term of Eq. (20) accounts for uncertainty in the cost function given IM, and the
second two terms account for uncertainty in the IM.

The first- and second-moment information for TCjIM can also be combined with a site hazard to compute
kTC(z), the annual frequency of exceeding a given Total Cost z. For this calculation, it is necessary to assume a
probability distribution for TCjIM that has a conditional mean and variance equal to the values calculated
previously. By evaluating the integral for several values of z, a plot can be generated relating damage values
to rates of exceedance. Details will be presented after epistemic uncertainty is incorporated in the framework.
4. Characterizing epistemic uncertainty

Eqs. (19) and (20) are valid for the case when there is no epistemic uncertainty in the ground motion hazard
curve or TCjIM. The calculation must now be extended to account for this uncertainty, which is expected to
be significant.

4.1. Epistemic uncertainty in TC given IM

Earlier, a model was assumed that can be written TCjIM = E[TCjIM]eR, where eR is a random variable
representing aleatory uncertainty. That model is now extended to incorporate epistemic uncertainty. We
assume a simplified (first-order) model of epistemic uncertainty, in which that uncertainty is attributed only
to the central or mean value of a random variable and not for example, its variance or distribution shape.
(In practice, one may slightly inflate this uncertainty in the mean to reflect these second-order elements of epi-
stemic uncertainty.) The total uncertainty in TCjIM is thus represented as TC j IM ¼ E½TC j IM�eReU, where
E½TC j IM� is the best estimate of the (conditional) mean and eR and eU are uncorrelated random variables
representing aleatory uncertainty and epistemic uncertainty, respectively. Note that E½TC j IM�eU is a random
variable representing the (uncertain) estimate of the mean value of TCjIM, with variance Var[E[TCjIM]].

Taking logarithms of this model for TCjIM gives ln TC j IM ¼ ln E½TC j IM� þ ln eRðIMÞ þ ln eUðIMÞ. The
random variables eR and eU are uncorrelated, and thus may be dealt with in separate steps. The procedure
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described earlier find the computed the variance of eR due to aleatory uncertainty. Now the variance due to eU

is needed. Logarithmic forms are used again here to allow use of sums rather than products. The change can
be made using the following relationship
Var½ln eRðIMÞ� ffi ln 1þ VarR½TCjIM�
ER½TCjIM�2

 !
ð21Þ
The terms Var[ln eR] and Var[ln eU] will be denoted b2
R and b2

U, respectively. Note that in the previous sections,
the uncertainty that denoted as b2

TCjIM is now referred to as b2
R, to distinguish it from the new b2

U term.

4.2. Representation of conditional variables

To distinguish between aleatory and epistemic uncertainties of various conditional random variables, an
additional notation is introduced. For example, the aleatory uncertainty of lnEDPjIM is denoted as
Var½ln EDPjIM� ¼ b2
R;EDPjIM ð22Þ
and epistemic uncertainty in the estimate of the mean of lnEDPjIM is denoted as
Var½lln EDPjIM� ¼ b2
U;EDPjIM ð23Þ
These values are equivalent to r2
ln EDPjIM. This notation is introduced simply to distinguish between aleatory

and epistemic uncertainty.
Estimation of epistemic uncertainties is a challenging task. References that provide guidance for estimation

of, or report estimated values for, the various epistemic uncertainties present in this framework include
[1,7,19–27]. When separating epistemic and aleatory uncertainties, care should be taken to avoid double-
counting any source of uncertainty by including it in both categories.
4.3. Modeling correlations

Estimates of correlations need to be made at each step of the PEER equation (i.e. EDPjIM, DVEjEDP after
DM has been collapsed out, and TCjDVE). Here a model is proposed for this purpose, and its use is demon-
strated for correlations in EDPjIM. The same model is generally applicable to the other variables as well. Con-
sider the following model
ln EDPjIM ¼ E½ln EDPjIM� þ eR;EDPjIM þ eU;EDPjIM ð24Þ
where E½ln EDP j IM� is the mean estimate of E[lnEDPjIM] and eR;EDPjIM and eU;EDPjIM are random variables
representing aleatory and epistemic uncertainty, respectively. Both random variables have an expected value
of zero. The aleatory uncertainty term (eR;EDPjIM) can be estimated directly from data obtained using Incre-
mental Dynamic Analysis, but a model for the epistemic uncertainty term (eU;EDPjIM) is needed.

Some epistemic uncertainty comes from uncertainty about the accuracy of the computer model used to rep-
resent the building’s behavior. Another source is ‘‘estimation uncertainty’’ that comes from estimating the
moments of lnEDPjIM from a finite sample of data. This is famously seen in the result that the sample mean
of n independent samples, each with variance r2, has variance r2

l̂ ¼ r2=n. The epistemic uncertainty is split into
two terms representing these sources
eU;EDPjIM ¼ eUmodel;EDPjIM þ eUestimate ;EDPjIM ð25Þ
where eUmodel ;EDPjIM is a random variable representing model uncertainty and eUestimate;EDPjIM is a random variable
representing estimation uncertainty, and both random variables have means of zero and can be assumed
uncorrelated (so they can be analyzed separately).

When calculating epistemic uncertainty, correlations must be calculated between estimates of means at dif-
fering IM levels (e.g., correlation of estimates of the expected value of lnEDP at IM = im1 and IM = im2:
qE½ln EDPjIM¼im1�;E½ln EDPjIM¼im2�Þ. While there is no correlation between aleatory uncertainties, epistemic uncer-
tainty (representing our uncertainty about the mean values) will potentially be correlated. The modeling
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uncertainty, represented by eUmodel;EDPjIM, may presumably, to a first approximation, be assumed to have a per-
fect correlation at two IM levels, because the models tend be common at least within the linear and nonlinear
ranges. The same perfect correlation could be applied to two different E[ln EDP]’s at a single given IM level.
Estimation uncertainty, represented by eUestimate;EDPjIM, may also be correlated at two IM levels. For instance, if
the same set of ground motion records is used to estimate the E[ln EDP]’s at more than one IM level by using
scaling, the estimates at varying IM levels will be correlated. A procedure referred to as the bootstrap provides
an effective method to measure this correlation as well as the variance of eUestimate ;EDPjIM [28].

Once the variance and correlation of eUmodel ;EDPjIM and eUestimate;EDPjIM at two IM levels has been defined, they
can be combined to find the correlation of eU;EDPjIM at two IM levels. If the variance of eUmodel ;EDPjIM (denoted
b2

Umodel;EDPjIMÞ is equal at both IM levels, and the variance of eUestimate;EDPjIM (denoted b2
Uestimate ;EDPjIMÞ is equal at

both IM levels, then the correlation of eU;EDPjIM at two IM levels is
qU;EDPjIM1;IM2
¼

b2
Umodel;EDPjIM þ q � b2

Uestimate;EDPjIM

b2
Umodel ;EDPjIM þ b2

Uestimate;EDPjIM

ð26Þ
where q is the correlation between E[lnEDPjIM] at two IM levels due to estimation uncertainty (the correla-
tion measured from the bootstrap). Note however that if q is expected to be near one, or if b2

Umodel;EDPjIM is
much greater than b2

Uestimate;EDPjIM, then qU;EDPjIM1;IM2
will be nearly one. Under these conditions it reasonable

to simply assume a perfect correlation. It is also necessary to find correlations for other pairs of random vari-
ables due to epistemic uncertainties (e.g. qE½ln EDPijIM¼im1�;E½ln EDPjjIM¼im1� and qE½ln DVEi jln EDP1�;E½ln DVEi jln EDP2�Þ; a sim-
ilar approach can be used for those correlations, although the simpler assumption of perfect correlation may
be appropriate in many cases.

The presence of correlations between E[lnEDPjIM] values at two IM levels will result in a non-zero corre-
lation (or equivalently, covariance) between E[TCjIM] values at two IM levels. The FOSM estimate of this
covariance is
Cov½lTCjIM1
; lTCjIM2

� ¼
X

k

Cov½lDVEk jIM1
; lDVEk jIM2

� þ 2
X

k

X
l<k

Cov½lDVEk jIM1
; lDVEljIM2

� ð27Þ
where
Cov½lDVEk jIM1
; lDVEljIM2

� ffi oelln DVEk jIM1

olln DVEk jIM1

oelln DVEl jIM2

olln DVEljIM2

����� lln DVEk jIM1

lln DVEljIM2

Cov½lln DVEk jIM1
; lln DVEljIM2

� ð28Þ
and
Cov½lln DVEk jIM1
; lln DVEljIM2

� ffi
olln DVEk j ln EDPi

o ln EDPi

olln DVElj ln EDPj

o ln EDPj

���� lln EDPijIM1

lln EDPjjIM2

Cov½lln EDPijIM1
; lln EDPjjIM2

�

þ Cov½lln DVEk j ln EDPi
; lln DVElj ln EDPj

�

ð29Þ
where, as above, lX is treated as a random variable due to epistemic uncertainty, and the notation lX is used to
denote the mean estimate of lX [1].
4.4. Epistemic uncertainty in the ground motion hazard

Epistemic uncertainty in the ground motion hazard is often displayed qualitatively using fractile uncer-
tainty bands about the mean estimate of the hazard curve, as shown in Fig. 3. More formally, the ground
motion hazard at a given IM level can be represented as
kIMðxÞ ¼ kIMðxÞeUIMðxÞ ð30Þ

where kIMðxÞ is the best estimate or mean estimate of kIM(x), and eUIM(x) is a random variable with a mean of
one. Considering the entire range of IM levels implies that eUIM(x) is in fact a random function of IM that is



Fig. 3. IM hazard curve for an example site near Los Angeles, California.
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correlated across the range of IM values. Note, however, that in practice the integral of Eq. (19) will be cal-
culated as a summation
E½TC� ¼
Z

IM

E½TCjIM ¼ x�jdkIMðxÞj ffi
Xn

i¼1

E½TCjIM ¼ xi� � �
kIMðxiÞ � kIMðxi�1Þ

xi � xi�1

� �
ð31Þ
where x0 < x1 < . . . < xn are the discrete integration points. Here it is only important to recognize that a dis-

crete set of kIM(x) is sufficient to characterize the hazard curve. Therefore we define a new random vector
DkIMðxiÞ ¼ �
kIMðxiÞ � kIMðxi�1Þ

xi � xi�1

ð32Þ
The mean and covariance of the array DkIM(xi), i = 1, . . . ,n can be computed from the mean and covariance of
the array of kIM(xi), i = 1, . . . ,n. The mean value of this array, kIMðxÞ, is a standard output from a PSHA anal-
ysis and was used earlier. The variances can be estimated from the fractile uncertainty often displayed in a
graph of the seismic hazard curve (e.g. Fig. 3). Covariances of the array are potentially available from the out-
put of PSHA software. Using this formulation, the random variable E[TC] can be represented as
E½TC� ¼
Xn

i¼1

E½TCjIM ¼ xi� � DkIMðxiÞ ð33Þ
where there is now epistemic uncertainty in E[TCjIM = xi] and DkIM(xi). Further, it is assumed that there is no
stochastic dependence between the epistemic aspects of E[TCjIM = xi] and DkIM(xi). This model can then be
used to compute the resulting epistemic uncertainty in E[TC], kcollapse and kTC(z).

5. Total repair costs, accounting for epistemic uncertainty

Consider first the effect of epistemic uncertainty on the mean estimate (E½TC�Þ and epistemic variance (Var
[E[TC]]) of E[TC]. Calculation of E½TC� is performed by taking advantage of the independence of
E[TCjIM = xi] and DkIM(xi), and using the linearity of the expectation operator
E½TC� ¼ E
Xn

i¼1

E½TCjIM ¼ xi� � DkIMðxiÞ
" #

¼
Xn

i¼1

E½TCjIM ¼ xi� � DkIMðxiÞ ð34Þ
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This is the discrete analog of Eq. (19) (where the mean hazard curve is used in the calculation). Thus, the esti-
mate of expected annual total repair cost is unchanged when epistemic uncertainty is included in the analysis,
provided that the mean estimate of the ground motion hazard curve is used.

Calculation of epistemic variance in E[TC] involves a summation of products of random variables. Con-
sider Eq. (33). If E[TCjIM = xi] is denoted as Xi, and DkIM(xi) as Yi, then E[TC] is of the form
E½TC� ¼
Xn

i¼1

X i � Y i ð35Þ
where X, and Y are random arrays. There is no correlation between Xi, and Yi, but there is quite likely a cor-
relation between Xi and Xj, and also between Yi and Yj (i 5 j), as discussed above. rX i;X j is calculated in Eq.
(27) and rY i ;Y j (the ground motion hazard) is discussed in the previous section. Given that the needed covari-
ance matrices have been calculated, the following result has been derived for a product of random arrays [17]
Var½E½TC�� ¼ Var
X

i

X iY i

" #
¼
X

i

X
j

ðrX i ;X jrY i ;Y j þ lX i
lX j

rY i;Y j þ lY i
lY j

rX i;X jÞ ð36Þ
For brevity, it is left to the reader to make the simple change of notation Xi = E[TCjIM = xi] and Yi =
DkIM(xi) at the time of implementation in a computer program. Unlike some other results in this paper, no
analytical solution for Eq. (36) exists.

These calculations for the mean and variance of E[TC] can be revised to incorporate costs due to collapses,
although the resulting equations are lengthy. Readers interested in using the results for a loss analysis are
referred to [1].
6. Annual rate of collapse, accounting for epistemic uncertainty

The steps described above provide all of the information necessary to compute the mean and variance in
annual probability of collapse – a decision variable of interest to project stakeholders. This process is
described below, as a relevant supplement to the repair cost calculations. The mean annual frequency of col-
lapse can be computed as
kcollapse ¼
Xn

i¼1

P ½C j IM ¼ xi� � DkIMðxiÞ ð37Þ
The mean and covariance DkIM(xi) were discussed earlier as part of the Total Cost calculations. What remains
is to model the mean and covariance of P(CjIM). Define P(CjIMi) as Xi. The mean value of P(CjIM) (i.e.,
E[Xi]) can be estimated as the fraction of records that collapse at a given IM level. The variance of Xi can
be estimated using the tools discussed in Section 4. The mean and covariance of the ground motion hazard,
Yi, remain identical to the results needed in Eq. (36). Thus the variance of kcollapse can be computing by numer-
ically evaluating Eq. (36) after substituting P(CjIMi) for the Xi term.

An analytical solution for the mean and variance of the annual rate of collapse exists, if one makes several
functional form assumptions. Consider a random variable for collapse capacity, Z, of the form Z = gZeUZeRZ,
where gZ is the median value of Z (expressed in units of IM), and eUZ and eRZ are lognormal random vari-
ables. eRZ accounts for aleatory uncertainty in the capacity, and eUZ accounts for epistemic uncertainty in
the median value of Z. The medians of eUZ and eRZ are defined to be one, and their logarithmic standard devi-
ations are denoted rlnðeRZ Þ ¼ bRZ and rlnðeUZ Þ ¼ bUZ . The moments of these random variables can be obtained
using information previously calculated. First, note that what was previously called P(CjIM) is in fact the
CDF of a random variable for collapse: FZ(IM). Because Z is lognormally distributed, gZ and bRZ can be esti-
mated by the mean and standard deviation, respectively, of a sample of logarithmic collapse capacity values
[10,25]. The term bUZ can be estimated using the techniques discussed earlier in this section for evaluation of
epistemic uncertainty. Further, the ground motion hazard curve is approximated by the function kIM(x) = k0

x�keUIM, where eUIM is a lognormal random variable with mean equal to one and standard deviation
rlnðeUIMÞ ¼ bUIM. This form for the hazard curve has been proposed previously by others [29,30].
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Under the above assumptions, the mean estimate of the mean annual frequency of collapse is given by
E½kcollapse� ¼ k0g
�k
Z � e

1
2k2ðb2

UZþb2
RZ Þ ð38Þ
Further, kcollapse is a lognormal random variable, and its logarithmic standard deviation is
rlnðkcollapseÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

UIM þ k2b2
UZ

q
ð39Þ
This result is derived from related problems that have previously been solved [30].
7. Rate of exceeding a given TC, accounting for epistemic uncertainty

With the epistemic uncertainty in E[TCjIM = im] and D kIM(im) described above, one can also compute the
mean annual frequency of exceeding a level of TC denoted z (i.e., kTC(z)). Because the terms GTCjIM(z,x) and
kIM(x) are now considered random functions due to epistemic uncertainty, the expected value of kTC(z) is
given by
E½kTCðzÞ� ¼
X

xi

GTCjIMðz; xiÞDkIMðxiÞ ð40Þ
where GTCjIMðz; xÞ ¼ E½P ðTC > z j IM ¼ xÞ� is the mean estimate of the Complementary Cumulative Distribu-
tion Function of TCjIM, and dkIMðxÞ is the mean estimate of the derivative of the hazard curve.

Calculation the of variance of kTC(x) first requires that the previously calculated epistemic variance in
E[TCjIM] be propagated to determine the epistemic variance in GTCjIM(z,x). If TCjIM is assumed to have
a lognormal distribution (perhaps a reasonable assumption given that repair cost distributions are observed
to be skewed [8,31]) with mean E[ln TCjIM = x] and standard deviation bR, then GTCjIM (z,x) is defined by
GTCjIMðz; xÞ ¼ U
ln z� E½ln TCjIM ¼ x�

bR

� �
ð41Þ
Modeling of epistemic uncertainty here is limited to uncertainty in E[ln TCjIM = x], which has standard devi-
ation bUðxÞ as discussed earlier. Using a first-order expansion, the variance in GTCjIM(z,x) can be shown to
equal
Var½GTCjIMðz; xÞ� ffi /
ln z� E½ln TCjIM ¼ x�

bRðxÞ

� �2

� b
2
UðxÞ

b2
RðxÞ

ð42Þ
where bRðxÞ is the aleatory dispersion of TCjIM as calculated before, and /(Æ) is the probability density func-
tion of the standard normal distribution. Similarly, the covariance between GTCjIM(z,x) evaluated at two IM
levels is
Cov½GTCjIMðz; x1Þ;GTCjIMðz; x2Þ� ffi /
ln z� E½ln TCjIM ¼ x1�

bRðx1Þ

� �
/

ln z� E½ln TCjIM ¼ x2�
bRðx2Þ

� �

� Cov½E½ln TCjIM ¼ x1�;E½ln TCjIM ¼ x2��
bRðx1ÞbRðx2Þ

ð43Þ
where the needed covariance term is given in Eq. (27). The variance of the mean estimate of kTC(x) can then be
computed by evaluating Eq. (36) after making the substitution Xi = GTCjIM (z,xi), with the means and covari-
ances of this term obtained from the equations in this section. Variance in the mean estimate of kTC(x) can also
be computed while accounting for the effect of collapses, but the resulting equations are lengthy and are per-
haps not of interest except at the time of implementation [1].

A simple closed form solution exists for the mean and variance of the annual rate of exceeding a given total
repair cost, under the following assumptions. E[TCjIM=im] is approximated by a function of the form a(im)b,
where a and b are constants. The conditional random variable TCjIM is characterized as TCjIM =
E[TCjIM = im]eTCjIM, where eTCjIM is a lognormal random variable with median equal to one and aleatory
and epistemic logarithmic standard deviations equal to bR and bU respectively. Finally, a function of the form
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kIM(x) = k0x�k is fit to the true mean site hazard curve, as before. Then the mean annual rate of exceeding Total
Cost z is given by
Fig.
E½kTCðzÞ� ¼ k0

z
a

� ��k=b
exp

1

2

k2

b2
ðb2

R þ b2
UÞ

� �
ð44Þ
Making the additional assumption that perfect correlations exist within lnE[TCjIM = x] and kIM(x) over
varying levels of x, the lognormal epistemic standard deviation of kTC (z) can be computed as
bkTCðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

UIM þ
k2

b2
b2

U

s
ð45Þ
This result allows error bounds to be computed for the TC hazard curve. Although this analytical formulation
requires several assumptions, its simplicity may make it useful in some situations.

8. The effect of variance in TC given IM

Most loss estimation studies have focused on E[TCjIM] and neglected Var[TCjIM], with the objective of
estimating only E[TC]. Here the role of uncertainty in TC given IM, is briefly considered to illustrate its effect
on results of interest.

Consider a representation for TCjIM as follows. The expected value of TCjIM is modeled by the function
E½TCjIM� ¼ 1� e�2IM2 ð46Þ

where TC is expressed as the fraction of the replacement cost, so its expected value varies between zero and
one. This function is similar in form to functions found from detailed loss estimation studies (e.g., [16]). This
function is plotted in Fig. 4. The logarithmic standard deviation of TCjIM, denoted bTCjIM, is assumed to be
constant. Here no distinction is made between epistemic and aleatory uncertainties, as the distinction would
not affect this result. The IM hazard curve is approximated by the functional form kIM(x) = k0x�k, with con-
stants k0 = 0.0002 and k = 3 (these values were obtained by fitting a numerical hazard curve for southern Cal-
ifornia, using spectral acceleration at one second as the IM). Using these values, the mean annual frequency of
exceeding a level of TC is computed numerically using Eq. (40). The results are plotted in Fig. 5 for a range of
bTCjIM values.

The analytical solution from Eq. (44) also provides some insight. First, the mean value of TCjIM is approx-
imated by the function E[TCjIM] = 1.4IM1.8, as shown in Fig. 4. The analytical solution produces results com-
parable to the numerical integration results for many of the TC and bTCjIM values, as seen in Fig. 5. The
accuracy of this analytical solution depends upon several conditions. First, here the numerical integration
4. Expected TC j IM ¼ 1� e�2IM2
for illustration, and the approximation TCjIM = 1.4IM1.8, used for the analytical solution.



Fig. 5. Analytical and numerical solutions for the mean annual frequency of exceeding a range of Total Cost levels, for several values of
bTCjIM.
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solution used the k0x�k functional form to represent the IM hazard curve, and also used a constant bTCjIM

value. In situations where these assumptions are not valid, the number of approximations needed for the ana-
lytical solution will increase and its accuracy will decrease. Second, the analytical solution is sensitive to the
region of the ground motion hazard curve where the kIM (x) = k0x�k functional fit is performed, so the fitting
should be performed over the IM region that is contributing most to repair costs. Finally, the result is sensitive
to the effectiveness of the fit illustrated in Fig. 4, so again this fit should be performed in the region that gov-
erns total repair cost results. If the functional fits are performed in other regions of these curves, the analytical
results can differ greatly. For these reasons, analytical solution results should be calculated and interpreted
with care.

A further observation can be made using the analytical solution of Eq. (44). If bTCjIM has a value of 0, one
obtains a result reflecting no uncertainty in repair costs given IM. For a bTCjIM value of 0.5 (a value obtained
in one application of the PEER framework [8]), the results are multiplied by a factor of 1.4 relative to the
bTCjIM = 0 case. That is, the annual rate of exceeding a given total cost has increased by 40% due to the effects
of uncertainty in TC (for a given IM) in this problem. The intuitive reason for this is that because of uncer-
tainty in TCjIM, low IM levels have the possibility of causing large repair costs; although high IM levels might
conversely cause low repair costs, the two effects do not offset each other because low IM levels occur much
more often than high IM levels. If the bTCjIM value were increased to 1 or 1.5 (which might be possible con-
sidering the many large uncertainties present in this problem [16]), the inflation relative to the bTCjIM = 0 case
would be approximately 4 or 20, respectively. Thus, it may be possible for this uncertainty to have a significant
effect on the mean annual frequency of exceeding a given TC level. However, at least for moderate bTCjIM val-
ues of less than one, this ‘‘amplification’’ due to uncertainty still provides only a second-order correction to the
result obtained when bTCjIM has a value of 0. It is for this reason that the FOSM approximations used to mea-
sure uncertainty in bTCjIM are believed to provide a sufficiently accurate result. This also illustrates why
numerical integration over the hazard curve is retained, because an explicit hazard curve is needed to evaluate
the basic result even when bTCjIM has a value of 0.
9. Conclusions

A procedure for propagating uncertainties in seismic loss estimation has been proposed, utilizing the frame-
work proposed by PEER for performance-based earthquake engineering. The calculation procedure combines
inputs of aleatory and epistemic uncertainty in ground motion hazard, building response, damage to building
elements, and element repair costs to quantify uncertainty in estimated repair costs and rate of collapse.
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Potential options for propagating uncertainty through this framework are Monte Carlo simulation, numer-
ical integration and first-order second-moment (FOSM) approximations. The procedure proposed here uses a
combination of numerical integrations and FOSM approximations. The FOSM method is used to collapse the
large vectors of conditional random variables into a single conditional random variable, Total Cost given IM.
Numerical integration is then used to combine this random variable with the ground motion hazard. This
numerical integration is treated accurately because it is believed to be the dominant contributor to the final
results. This final integration also does not involve vectors of random variables, meaning that numerical inte-
gration is possible, unlike the high-dimensional integrations required for the other steps. The quantities that
can be computed are the expected value and epistemic variance of the mean annual loss, mean rate of collapse,
and mean rate of exceeding a given cost.

Large vectors of random variables are needed to represent engineering demand parameters, element dam-
age measures, and element repair costs in this loss estimation framework. Accounting for these large vectors
makes the basic integral equation used for loss estimation (Eq. (1) more difficult to evaluate than it might at
first appear. The large vectors also imply that a method is needed to quantify the joint stochastic properties of
these element properties, and while these dependencies have a large impact on final results, data needed for
characterizing them is sometimes severely lacking. In the context of the proposed procedure, which accounts
for dependency through linear correlation coefficients, several simple models for characterizing correlations
based on generalizations of the equi-correlated model are proposed. Estimation of correlations using this
approach may be more intuitive than simply estimating correlation coefficients individually for each pair of
random variables in a vector. It is expected that implementations of this procedure will take the form of simple
computer programs, which will aid repeated calculations for vectors of random variables and facilitate sensi-
tivity analyses by allowing input parameters to be varied while quickly observing the end effect of these
variations.

Both aleatory and epistemic uncertainties are considered in the analysis. While this aleatory/epistemic treat-
ment is well developed in some areas (e.g., annual frequency of failure calculations in the nuclear industry), it
has to date received limited attention in seismic loss estimation efforts. As an aid for those hoping to imple-
ment these methods, references to previous studies attempting to characterize epistemic uncertainty are pro-
vided. While consideration of epistemic uncertainty leads to increased complexity in estimation and analysis,
the authors believe it to be a necessary component in the development of this field. This is especially true
because in its current data-poor state, cost analysis can involve large epistemic uncertainties which may sig-
nificantly affect the total variance of TCjIM.
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